

sPHENIX Tracking System

TK Hemmick

Detector Specifications

- Mechanical Constraints (magnet/EMCal-driven)
 - EMCal Mechanical constraint @ r=90cm.
 - Physics = coil aspect ratio: $|\eta| < 1.1$ or $Length \approx Diameter$
 - ► Current Tracker Confining Volume: Length = Diameter = 160cm.
- Physics program accomplished via two toughest constraints:
 - Mass resolution sufficient to resolve Upsilon States.

Outer Tracking

EMCal

- DCA Resolution sufficient for tagging heavy flavor secondary vertices.
 - $c\tau(D) = 123 \ \mu m; \ c\tau(B) = 457 \ \mu m$
 - $ightharpoonup \sigma_{DCA} < 100 \ \mu m$

Inner Vertex

- **Environmental constraints:**
 - Central Au+Au multiplicity @ full RHIC Energy.
 - Full RHIC-II Luminosity (100 kHz raw, 15 kHz w/in vertex)

"...we anticipate that the features and experience gained with this device might provide the basis for a "day-1" detector at a future EIC, independent of where the new facility will be sited. It is envisioned that this new collaboration will consider the possible evolution toward such a detector as part of its mission."

--Berndt Mueller

Entertaining options requires more work but generates the necessary flexibility.

Physics Constraint

10/23/2015 Tracking Systems (Practice)

Description of Subsystem Options

- Inner Vertex Detector ($\sigma_{DCA} < 100 \ \mu m$)
 - Reuse existing PHENIX VTX pixel detector & spares.
 - MAPS Technology (e.g. ALICE ITS Upgrade)

Reuse PHENIX VTX Components

- Momentum Resolution Limited by Multiple Scattering.
- Significant Dead Area (non-working & gaps)

NOTE: Existing PHENIX pixel detector currently achieves 60 μ m @ p_T > 2 Gev/c DCA resolution (50 μ m evt vertex; 30 μ m pixel).

MAPS technology would only improve this due to smaller pixels and less material.

- Outer Tracker $(\sigma_m < 100 \frac{MeV}{c^2} @ 9 \frac{GeV}{c^2})$
 - Silicon Strip Detector
 - Non-gated TPC (Hybrid means TPC+reuse)

New PHENIX-like Components

- Straightforward technology.
- Fast (no event pileup).
- Multiple-Scat limited.
- Little PID capability

Compact TPC (ala ALICE?)

- Higher momentum resolution
- Smaller Bremsstrahlung tails.
- Leverage ALICE R&D
- PID via dE/dx & neutral V's.

Comparison requires detailed simulation.

Terminology:

- Reference: Reuse + Si-Strip
- Hybrid: Reuse + TPC
- Others as indicated

10/23/2015 Tracking Systems (Practice)

Momentum Resolution-I

Position Resolution: (Silicon best)

$$s = \rho(1 - \cos\frac{\Delta\phi}{2}) \approx \rho(1 - (1 - \frac{1}{2}\frac{\Delta\phi^2}{4})) = \rho\frac{\Delta\phi^2}{2} \approx \frac{0.3}{8}\frac{L^2B}{p_T}$$

$$\frac{\sigma p_T}{p_T} = \frac{\sigma_s}{s} = \frac{8\sigma_s}{0.3L^2B}p_T$$

$$\frac{\sigma p_T}{p_T} = \frac{\sigma_s}{s} = \frac{8\sigma_s}{0.3L^2B}p_T$$
 $\frac{\sigma p_T}{p_T} = \sqrt{\frac{720}{(N+4)}} \frac{\sigma_x}{0.3L^2B}p_T$

Multiple Scattering: (Hybrid better)

$$\phi_0 = \frac{13.6 \text{MeV}}{\beta c p_T} z \sqrt{\frac{L}{X_0}} \left[1 + 0.038 \ln \frac{L}{X_0} \right]$$

$$\frac{\sigma_{p_T}^{ms}}{p_T} = \frac{0.052}{\beta BL} \sqrt{\frac{L}{X_0}} [1 + 0.038 \ln \frac{L}{X_0})].$$

3 Dimensions:

$$\frac{\sigma_p}{p} = \sqrt{\left(\frac{\sigma_{ms}}{\sqrt{\sin \theta}}\right)^2 + \left(\sigma_{det} \ p \sin \theta\right)^2 + \left(\sigma_{\theta}^{det} \ \cot \theta \sin \theta\right)^2 + \left(\frac{\sigma_{\theta}^{ms}}{\sqrt{\sin \theta}} \frac{\cot \theta}{p}\right)^2}$$

Bremsstrahlung: (Hybrid better)

$$k \equiv \frac{\Delta E}{E} \qquad \frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3}k + k^2\right)$$

$$N_{\gamma} = \frac{L}{X_0} \left(\frac{4}{3} \ln \frac{k_{max}}{k_{min}} - \frac{4(k_{max} - k_{min})}{3} + \frac{k_{max}^2 - k_{min}^2}{2} \right)$$

Tracking Systems (Practice)

Momentum Resolution calculated for all options from analytic and full Monte Carlo Simulations

Momentum Resolution-II

Station	Layer	radius (cm)	pitch (μm)	sensor length (cm)	depth (µm)	total thickness $X_0\%$	area (m²)
Pixel	1	2.4	50	0.425	200	1.3	0.034
Pixel	2	4.4	50	0.425	200	1.3	0.059
S0a	3	7.5	58	9.6	240	1.0	0.18
S0b	4	8.5	58	9.6	240	1.0	0.18
S1a	5	31.0	58	9.6	240	0.6	1.4
S1b	6	34.0	58	9.6	240	0.6	1.4
S2	7	64.0	60	9.6	320	1.0	6.5

-	layer	radius	total thickness	$\Delta L/L$	c_{ms}	σ_{ms}
		(cm)	$\% X_0$		(mrad)	(mrad)
	VTX 1	2.7	1.3	0.95	1.8	1.7
	VTX 2	4.6	1.3	0.92	1.8	1.7
	air	15	0.1	0.73	0.03	0.02
	field cage	30	1.0	0.45	1.12	0.5

- Analytic and full Geant simulations performed.
- All results agree remarkably well.
- All options meet the experiment design goal.

Reference Design

Hybrid: Reuse Pixels + TPC

Reconstruction Efficiency

Reference: Central HIJING

- Monte Carlo reconstruction of all tracks demonstrates that the reference version performs remarkably well both for single track events and embedded into central HIJING.
- ▶ Electron tracks will also suffer Bremsstrahlung losses forcing them outside the 3σ window.
- ► These losses are tolerable even in the thickest design option.

Bremsstrahlung-induced Efficiency Losses

	Electron Singles (loss/efficiency)	
Reference	18% / 82%	33% / 67%
Strip + MAPS	16% / 84%	29% / 71%
Hybrid	12% / 88%	23% / 77%
MAPS + TPC	7% / 93%	12% / 88%

10/23/2015 Tracking Systems

Design Drivers

Reference Option

Station	Layer	radius (cm)	pitch (µm)	sensor length (cm)	depth (µm)	total thickness $X_0\%$	area (m²)
Pixel	1	2.4	50	0.425	200	1.3	0.034
Pixel	2	4.4	50	0.425	200	1.3	0.059
S0a	3	7.5	58	9.6	240	1.0	0.18
S0b	4	8.5	58	9.6	240	1.0	0.18
S1a	5	31.0	58	9.6	240	0.6	1.4
S1b	6	34.0	58	9.6	240	0.6	1.4
S2	7	64.0	60	9.6	320	1.0	6.5

- In many ways, a multiple-scattering limited spectrometer is desirable; robust against:
 - Single point resolution.
 - Alignment.
 - Detector "creep"
- The design must maintain detector thickness spec. in the middle layer (dominant contributor to the sagitta determination).
- Mass resolution (currently ~6% better than required) will degrade as $\sqrt{\frac{x}{\chi_0}}$ of the S1 layer and improve as $\frac{1}{R}$ (radius of S2).
- The thickness of S1 determines the over-all size, R, and the cost (\approx R²).
- ▶ We can tolerate a ~12% increase in the S1 thickness in the current design spec.

Hybrid Tracker Option

Degradation of Mass Resolution

- The Upsilon mass width for the hybrid setup is influenced by the single point resolution.
- Current calculations assume an RMS resolution of 1/10 the pad size $(\frac{a}{10})$.
- The hybrid system will meet the design goal with an RMS resolution as bad as 250 μm.

Additional Design Drivers for TPC

- The hybrid option will benefit from the development of the ALICE upgrade detector(s).
- ▶ The list of considerations necessary to realize the hybrid option is nonetheless significant.
- More detail will be available in the afternoon session.
- Here we summarize some of the challenges facing our design.

	Comment 1	Comment 2
Chevron Pads	Good charge sharing for low diffusion gasses	Asserts a (correctable) diff. non-linearity
GEM gain stages	High rate capable (vs wire chamber)	Gain uniformity and drift; longevity
SAMPA Chip	TPC-specific chip, Continuous readout	ALICE Upgrade
Ion Back Flow	Tunable IBF vs dE/dx resolution	ALICE Upgrade
High Voltage	Known solids capable w/ safety margin.	Solids introduce single point failure.
Diffusion	Small diff improves resol, collection time	Diff assists spreading charge over pads.
Electron v _D	Fast lowers stacked evts; plateau desirable.	Slow lowers "voxel occupancy"
Noble Gas	Ar mix: nice plateau; low field; low ion mobility (therefore lots of space charge)	Ne mix: much higher ion mobility, no plateau, high V_{CM}
dE/dx	Not a driving feature for heavy ion program	Critical for EIC use

More work required to prove viability of hybrid design.

L2 Project Scope

13	1.3.2	□ Pixel Detector
14	1.3.2.1	
29	1.3.2.2	

These charts indicate the L2 items of the project scope for each detector option.

53	1.3.3	□ Outer SiStrip Detector
54	1.3.3.1	⊕ Outer SiStrip Design (Mech and system)
71	1.3.3.2	⊞ SiStrip Prototyping
133	1.3.3.3	⊕ Outer SiStrip Production
181	1.3.3.4	⊞ SiStrip Electronics

267	1.3.4	☐ Time Projection Chamber
268	1.3.4.1	TPC Design
279	1.3.4.2	⊤ TPC Prototype
317	1.3.4.3	TPC Production
361	1.3.4.4	+ TPC Electronics

Resource/Cost Drivers

- Costs here are limited to the outer tracker options.
- Details on the inner tracker options will be presented in the afternoon breakout sessions.

10/23/2015 Tracking Systems

Schedule Drivers

- Technology decision needs to be made sometime in early to mid 2017 though it could easily be driven by a successful receipt of outside funding
- ► SiStrip: Sensor production and ladder, stave assembly drive the schedule
- TPC: Design and prototyping drive the schedule if one is to be ready to build in Jul 2018.

Organization

Technical/Project Status

S1 Silicon module prototype

- Sensor for S2
 - > 96 mm x 92.16 mm
 - > 320 µm thick
 - AC coupled
 - 60μm x 8mm ministrips
 - ▶ 128x24 readout channels
- 5 sensors, March 2015
 - No NG channels or strips
 - ▶ Vfd = 50 V
 - Vbreakdown > 250V (>500V for two)
- All 5 sensors are now at BNL for testing

TPC R&D (ongoing from EIC)

Apparatus

Results

Simulation

- Novel segmentation schemes
- Pad plane response <100 μ m w/ 2mm pads.
- Full Gas characterization:
 v_d, charge attachment, ion mobility, avalanche spread.
- ► Test beam & cosmic tracking.

Issues and Concerns

	Issue/Concern
Technology Downselect	Timeline and Criteria
Reused pixels	Gaps (very small) and dead pixels (lessened using spare ladders).
Strips	Thickness of S1 is critical in determining the over-all size of tracker and thereby the cost.
SAMPA Chip	Timeline for chip production; integration w/ DAQ
Ion Back Flow	Resolution degradation due to space charge distortions.
High Voltage	Single point of failure using solid for HV barrier
TPC Field Map	What is and do we achieve the desired uniformity/measurement
Data Volume for continuous readout.	Sees full collision rate (not just w/in event vertex); needs realistic estimate including effects of noise.
Reconstruction of TPC→Silicon	Requires further simulation of combined performance.

10/23/2015 Tracking Systems (Practice)

Summary

- Consistent with the charge of maintaining long term viability of the tracking technology we are purposely developing competing alternatives:
 - Inner Vertex Detector
 - Reuse PHENIX pixels
 - MAPS technology
 - Outer Tracker
 - Silicon Strip Detector
 - ► TPC
- ► All of these technologies have been shown to meet the physics requirements for heavy ion collisions with varying performance, risk, and utility for longer term use.

10/23/2015 Tracking Systems 15